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Introduction

T
he term “econophysics”, proposed in 1995 in

Kolkata by H. Stanley, celebrates 15 years;

however, the studies of economic systems using the

tools of statistical physics initiated much earlier. Indeed, V.

Pareto formulated his famous law of income distribution

already in 1897 , and only three years later, L. Bachelier put

forward the random walk model as the fundamental model

for financial time-series . Further, E. Majorana pointed out

that statistical mechanics is a tool that can be applied also in

social sciences . In 1963 B. Mandelbrot found that the time-

series of cotton price undergoes large fluctuations . The

studies of econophysics have developed at an ever

accelerating rate since 80’s, particularly fast after the

adoption of the very term, until drawing the attention of

Estonian physicists at the beginning of the new century. The

present paper is aimed to provide a short overview of the

econophysical research in Estonia, which thus far has

resulted in more than 15 research papers.

Economy is a very good example of complex systems:

numerous building blocks interact with each other and form

a system with qualitatively new properties, intermittent and

scale-invariant behaviour. However, in the case of economy,

already the building blocks — humans performing

economical activities — are not simple entities. This is

unlike to what is observed in the case of “simple” complex

systems, such as sandpiles or turbulent flow. The physics of

complex systems has taught us that even these “simple”

complex systems can lead to a strong intermittency and are

very difficult to study theoretically. So, it becomes clear
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that in econophysics, one can find examples of an ultimate

complexity.

What can be done in the case of such an extreme

complexity? There is probably not much sense to make

very detailed models, just because it is impossible to

account for all the “unreasonable players”. We are basically

left with two options: first, we can make very

, which, although inaccurate, capture certain features

of the economical dynamics. For example, one can

introduce an ensemble of stochastically interacting traders

to derive a power law scaling of market prices . Similarly,

one can use the Pareto law for market participants and

postulate optimal trading behaviour to derive the power law

for the probabilities of large market movements .

Alternatively, one can follow a

to devise general statistical descriptions of the

spatiotemporal behaviour of markets. For instance, one can

use Trade and Quote databases to show the existence of two

phases in the behaviour of financial markets: besides the

equilibrium phase, there is also a phase where the most

probable behaviour is either selling or buying . Another

example is provided by the study, which shows that upon

properly accounting for the market capitalization of

different economic sectors, the price-impact data can be

collapsed into a single power law as a function of the

transaction size .

In Estonia, both, the branch of robust models as well as

that of the semi-empirical approach, are represented. The

corresponding studies are carried out, respectively, at the

National Institute of Chemical Physics and Biophysics and

at the Institute of Cybernetics at Tallinn University of

Technology, both in Tallinn.

The researchers at the National Institute of Chemical

Physics and Biophysics have been investigating

robust

models

(semi-)empirical approach

kinetic
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Many-agent Wealth Exchange Models

374 SCIENCE AND CULTURE, SEPTEMBER-OCTOBER, 2010



wealth-exchange models
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systems. This type of models were independently

introduced in different fields such as social sciences ,

economics , and (econo)physics . The international

meeting hold in 2005 had an

important role in integrating the knowledge accumulated

that far about the various models, bringing out the earlier

works of John Angle and Eleonora Bennati , and in

unveiling the basic mechanism in action leading to the

appearance of a power law tail in the stationary wealth

distribution in KWEMs.

Let us discuss the general structure and features of

KWEMs. In a KWEM the system is made up of agents,

whose status at a certain time is characterized by the

wealths ( ) 0 ( = 1, 2, ..., ). In simple models agents

interact with each other pairwise: at every time step two

randomly chosen agents and exchange an amount of

wealth so that the total wealth is conserved. The new values

and after the exchange are ( , )

,

(1)

The form of defines the underlying dynamics of the

model; in the most simple case it is a constant , or it can

be a function of , and some parameter characterizing the

agents . In more complex multiagent interaction models

the number of agents that enter each trade is 2. Then

the evolution law has a more general form ,

with = 1, , , , and the depending

somehow on the wealths of the interacting agents.

Typically in KWEMs there is solely one parameter

characterizing the agents. For example, it can be an

exchange parameter (0, 1] which defines the fraction of

the wealth that enters the exchange process. Equivalently

with one can introduce the saving parameter, = 1 – ,

representing the fraction of preserved during the

exchange. If the value of (or ) is the same for all the

agents, the model is referred to as . If the

agents assume different values (or ) then the model is

called . As studied in Ref. , the parameter

(or ) also determines the time scale of the relaxation

process. In Ref. a unified formulation of various types of

KWEMs with pairwise interacting agents was provided.

For 1 (or > 0), the homogeneous KWEMs have

the self-organizing property to converge toward a stable

state with a wealth distribution which has a non-zero

median, differently from a purely exponential distribution.

It is well fitted by a -distribution, which describes real

wealth distributions in the range of small and intermediate

values of the wealth, representing most of the agents . In

Ref. it was shown that the equilibrium wealth distribution
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( ) of the homogeneous KWEM proposed in Ref. ,

defined by , where

and = 1– are two uniform random numbers in (0, 1), is

very similar to the following -distribution,

(2)

Here = , with ( ) = (1– 2 )/(1 – ), =

/ being the (constant) average wealth of the system, and

( ) being the -distribution. In Ref. a comparison

between the wealth equilibrium distributions of various

other KWEMs was presented.

Let us discuss the link between KWEMs and statistical

physics. The form (1) of the exchange law suggests an

analogy with the energy transfer between molecules of a

fluid . Furthermore, the distribution (2) is well known

in statistical mechanics, representing for example the

canonical distribution of the molecular kinetic energy of a

gas in = 2 dimensions if, following the equipartition

theorem, the average kinetic energy is assumed to be =

2 = , where is the temperature. This direct link

between KWEMs and statistical physics can be confirmed

through a standard kinetic theory approach ,

which shows that homogeneous KWEM agents with saving

parameter behave dynamically as the molecules of a gas

in ( ) = 2 ( ) dimensions .

In Ref. it was shown that when all the agents are

trying to save as much as possible ( 1), the distribution

(2) tends to an egalitarian distribution, i.e., in the end all

agents have the same amount of wealth .

While the -distribution provides a good fitting to the

stationary wealth distributions, it does not seem to represent

the exact solution . The search of the actual shape of the

equilibrium wealth distribution is still an active topic of

research .

As mentioned, the real wealth distributions in the range

of small and intermediate values of the wealth, representing

most of the agents, are well fitted by a -distribution .

Instead, the remaining agents with large values of wealth,

forming a small part of the system yet owning a significant

fraction of the total wealth, are described by the Pareto

power law. Such power law tails are reproduced by

heterogeneous models. Indeed, as discussed in Ref. ,

heterogeneous models with diversified parameters (or )

provide both, the exponential or -distribution shapes of

real wealth distributions at small and intermediate values as

well as the Pareto power law observed at larger values of

wealth.
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Thus, heterogeneity plays a crucial role in the

generation of the power law tail: a power law is produced

by the overlap of the single agent wealth distributions,

which are fitted by -distributions with different

parameters. In other words, the global wealth distribution

can be resolved as a mixture of partial wealth probability

densities with exponential tails. This has been suggested in

Ref. to represent only one example of a more general

mechanism leading to the appearance of a power law tail in

many other complex systems, including the Zipf law in

linguistics, i.e., the power law observed in the rank

distribution of words in a written text.

In Ref. the wealth scale and the time scale of a

KWEM have been investigated. In a heterogeneous

KWEM, both the wealth scale and the time scale of each

agent is determined by the parameter (or ). An agent

with saving parameter has relaxation time 1/(1 – ).

Therefore the relaxation time of the global heterogeneous

system is determined by the largest saving parameter

= max{ } so that . In a heterogeneous

KWEM a power law can appear. In this case a natural

wealth scale is present in the stationary wealth distribution,

represented by the wealth cutoff at which the power law

ends and the wealth distribution goes to zero. = max( )

represents the wealth of the richest agent. The wealth cutoff

and the saving parameter cutoff are closely related to

each other: the closer is to 1, the larger is . This goes

well also with the proverb that rich is not the one who earns

a lot, but the one who spends a little.

To summarize, KWEMs are minimal models of closed

economies, in which the total amount of wealth is

constant and therefore can be used to describe systems

where the flow of money is conserved. However, it is

noteworthy that even so KWEMs provide realistic shapes of

the stationary wealth distributions, suggesting that there are

two main factors underlying the wealth dynamics: the

microscopic exchange mechanism between pairs of agents,

and the heterogeneity of the agents.

Econophysics research at the Institute of Cybernetics

has been following predominantly the semi-empirical

approach. The first studies were triggered by the practical

problem of optimal portfolio construction, which was faced

by Robert Kitt at the Hansabank (formerly the largest bank

in Estonia, now a part of Swedbank). The conventional

econometric models to determine the optimal portfolio

structure for many assets were found to yield unstable

results in stock markets . The first studies were relatively

simple: they were aimed to test the “regularity” of the local

markets by studying the self-affine scaling behaviour of the
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Semi-empirical Studies of Financial Time-

series

Baltic market indices and comparing these with the global

ones (cf. Ref. ). In full agreement with the earlier studies,

c.f. Ref. , it was found that the Baltic indices are

statistically self-affine. However, the Hurst exponent values

tended to be somewhat higher (0.6–0.7) than in the case of

larger and longer established markets (ca 0.5). Therefore, it

was hypothesized that new and far-from-equilibrium

economies are characterized by stronger persistency in

market movements.

Nowadays it is well understood that the self-affine

behaviour is only a very specific case of scale-invariance.

As argued above, the market dynamics is inherently

extremely complex. Hence, in order to understand its

statistical features, a statistical description, which is as

generic as possible, is needed. Multifractality represents a

significantly more generic class of scale-invariance than the

Gaussian self-affine time-series and has been shown to be

present in financial t ime-series . However,

multifractality implies also the validity of a specific

assumption, namely, the presence of a random

multiplicative cascade. This is in a natural way satisfied in

the case of turbulence: the frozen-in and conserved

quantities (enstrophy, energy) are passed down to the next

generation of vortices when a larger vortex splits into

smaller ones. However, in the case of market fluctuations,

there is no “enstrophy”, and no multiplicative cascades in

the asset markets. If the total amount of money is conserved

this could lead to some kind of multifractality, if the market

were to split into smaller fragments. However, there is no

such kind of market splitting in reality. Hence, it would be

desirable to devise a statistical description of the scale-

invariant time-series, which would be more generic than the

multifractal formalism. Precisely this led to the introduction

of the method called

(MLVP) .

Let us consider a time-series ( ), where can be, for

example, a market index value. Then, a low-variability

period of length is defined as a continuous time interval

= [ + ] ( = 1, 2, ...) so that:

(a) (3)

being a threshold parameter; angular braces

denote sliding average over a window of width >

(in principle, the width of the window can be

arbitrarily large, however, the highest time

resolution of the method and the widest scaling

range is achieved when it is as small as possible,

i.e., just a few cut-off scales );

(b) each period has maximal possible length, implying

that decreasing or increasing would lead to

violation of Eq. (3).
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Note that in Eq. (3), the left-hand-side can be

alternatively normalized to the sliding average .

This allows to improve the analysis of very long time-

series, which are characterized by an exponential price

growth. Further, we study the cumulative distribution

function of the low-variability periods (the number of

periods with ), ( ). We speak about multiscaling

behaviour if there is a power law,

( ) = , (4)

where is a scaling exponent and is a constant.

Note that a particular case of this method (with being

fixed to the cut-off scale ) has been introduced recently

also in Refs. and is referred to as the “volatility return

intervals analysis”.

In Ref. the researchers of the Institute of Cybernetics

showed theoretically that in the case of multifractal time-

series there is a MLVP-behaviour; this has been confirmed

in Ref. . Furthermore, it turns out that the scaling exponent

( ) is defined by the multifractal spectrum of the Hurst

exponents ( ) :

( , ) = (log ). (5)

Whereas the multifractal spectrum is a function of one

variable, the MLVP exponent is a function of two variables,

and hence, it can describe a wider class of scale invariance.

If the MLVP-behaviour is followed, Eq. (5) allows us to test

the presence of multifractality. Indeed, if one plots

log , the data for different values of and should lay on

a curve, rather than being scattered over a plane. Using this

method, it was found that currency exchange rates and

market indices follow reasonably well multifractality for

larger than a day, but fails at time scales smaller than a

day . Let us note that for multifractal time-series the

MLVP method effectively substitutes the multifractal

scaling analysis, with two small benefits: it remains

applicable when multifractal analysis fails and it tests the

time-series at the highest available frequency [for ( , )

one can use = , but for ( ) any implies a scaling from

the highest frequency down to lower frequencies, with the

range of time scales representing at least a couple of

octaves].

In Ref. the method of MLVP analysis has been also

applied to daily trading volumes for different stock indices.

The multiscaling behaviour has been, indeed, observed, but

there was no data collapse on the graph of scaling exponent

log . Therefore, it was concluded that

multifractality is not a good model for these data.

Furthermore, the MLVP method has been straightforwardly

generalized to allow a multivariate data analysis. Upon
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introducing two thresholds, one for the volume and the

other for the price movement, one can define the low

variability periods as either the period during which none of

the thresholds is exceeded, or the period during which at

least one of the thresholds is exceeded. Not surprisingly,

such a scaling analysis revealed a strong coupling of the

price movements and the trading volumes .

Furthermore, it was shown that as soon as the price

movements follow a MLVP behaviour, an interesting super-

universality is to be expected: the probability of observing a

larger-than-threshold movement (the “silence-breaking”

probability) is inversely proportional to the length of the

ongoing low-variability period. While theoretically this is a

nearly obvious finding, it was not so easy to test on the

basis of the financial data series: almost all these series are

just too short to provide statistical volumes which are easy

to analyse. In Ref. a novel data analysis technique was

developed to overcome this problem of data sparseness. It

allowed to confirm the validity of the super-universal

scaling of the silence-breaking probability on the basis of

various time-series.

A somewhat independent research subject that has been

studied at the Institute of Cybernetics is directly related to

the practical applications addressed in Ref. : developing

non-Gaussian portfolio optimization techniques. According

to the efficient market hypothesis, the predictions of the

market price movements are bound to be well below the

noise level. Any counterexample would be equivalent to

violating the second law of thermodynamics; furthermore,

it would cease to be valid as soon as you publish it.

However, this fundamental restriction does not apply to the

risk prediction. Therefore, it makes sense to try to improve

the risk optimization techniques.

The problem of portfolio construction takes us back to

the root of nonlinear time-series analysis and econophysics:

what should the behaviour of investors in the financial

markets be for combining the securities into the portfolio?

The Nobel-prize-winning Markowitz has postulated (by

assuming Gaussian movements in the financial time-series)

that investors should use variance as their measure of risk .

The mean-variance optimisation is a centrepiece to a linear

portfolio construction. However, the question can be raised:

what is the true source of risk while investing into the stock

markets? The central idea in Ref. was that the risk can be

divided into two parts: the Gaussian part and the leptokurtic

part (the latter referring to the higher moments of the time-

series). The correlation matrices of these two parts can

differ significantly, and hence imply different optimal

positions. So, the portfolio construction should first answer

the question, which is the risk to be minimised. If it is a risk

42

41

32
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due to typical Gaussian price fluctuations then the mean-

variance optimisation is a good approximation.

However, if the main concern is to protect against the

extreme (but rare) movements then another approach is to

be taken. The simplest method is just to disregard the small

Gaussian price fluctuations (below a threshold value, which

serves as a control parameter) and devise the portfolio

optimisation, based on the correlation matrix of the largest

movements (corresponding to the “fat tail” of the

distribution function). Of course, there is an additional

problem: disregarding most of the data points reduces the

reliability of the correlation matrix calculation. Therefore, it

is important to avoid too high threshold parameter values

and apply additional techniques (e.g. the factor analysis).

Such a strategy has been implemented and analysed in

Ref. in the simplest case of two-asset portfolios. As

expected, optimising against the non-Gaussian risk inflated

slightly the standard deviation of the portfolios (as

compared with the traditionally optimised portfolios), but

the drawbacks (large and rapid losses of the portfolio value)

were significantly smaller. Such studies cannot answer the

most important question: should we reduce the small

fluctuations, or the drawdowns? This is exclusively a

subjective choice, but in some cases the answer is simple; it

is provided by a (not perfect) parallel from the aviation

industry: should we minimize the vibration in the cabin or

the chances of falling down?

The present review of the econophysics research in

Estonia is devoted to the 15th anniversary of the term

“econophysics”. This context asks for a brief discussion of

the history and translation of this word into Estonian

language. The term “ was born in 2001,

when R. Kitt started his PhD studies; thus, it has only a half

of the age of the English word. This noun is a

straightforward compound of the words “majandus”, which

means “economics”, and “füüsika”, which means

“physics”; therefore, the criticism which has been

sometimes addressed to the English term is not applicable

to the Estonian one. However, in parallel also the term

“ökonofüüsika”, adapted directly from English, has been

used.

In absolute numbers, the econophysics community in

Estonia is small. In fact, there are only 6 people who are

working in this field, and thus far only one doctoral thesis

has been defended in econophysics. However, this makes 4

econophysicists per million habitants, which is no longer a

small number. Furthermore, we believe that many important

results have been obtained. The direct contacts between the

scientists and the largest bank in Estonia open up a

44

45

Conclusion and Outlook

majandusfüüsika"

possibility to have an access to real data, otherwise often

difficult to obtain.

Unfortunately, there is currently no tuition of

econophysics at the Estonian universities; however, from

time to time seminars are held. Also, in year 2007 at the

University of Tartu, two courses of complex systems were

given by M. Patriarca, where (among other topics) an

overview of the basics concepts of econophysics was given.

Furthermore, one doctoral student is currently carrying out

research under the supervision of R. Kitt, in the Department

of Economics at Tallinn University of Technology. This

allows us to believe that econophysics is a growing research

field that surely has a future in Estonia.
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